863, and 592 cm⁻¹ are characteristic of the $-SF_6$ group,^{2,10,11} and a band at 702 cm^{-1} is also attributable to $-SF_{5}^{2,11}$ A peak at 795 cm⁻¹ probably arises from an S-F stretch in $=$ SF₂ $=$. Peaks at 725 and 663 cm^{-1} have not been assigned.

The mass spectrum (Table I) was obtained on a Hitachi Perkin-Elmer RMU-6A spectrometer. The molecule ion peak was present at *m/e* 352 with a peak at m/e 354, about 13% as intense as the m/e 352 peak. This was consistent with three sulfurs in the molecule. Smaller peaks corresponded to the ions containing *33S* and 15N isotopes. The largest peak was that for $SF₅$ ⁺ with the second largest being the $SF₃$ ⁺ peak. This differs from SF_6NH_2 and $SF_6N=SF_2$ mass spectra in which the SF_3^+ peak was more intense than the SF_5^+ peak.

TABLE I

	MASS SPECTRUM OF $(SF_5N=)_2SF_2$	
m/e	Rel intens	Species
46	5.5	NS^+
51	2.3	$SF+$
65	2.2	NSF^+
70	8.8	$SF2$ +
83	2.1	S_2F^+
84	2.0	NSF_2 ⁺
85	2.1	SiF_3 ⁺
89	27.5	SFs +
91	1.6	$S^{34}F_2$ ⁺
102	1.3	S_2F_2 ⁺
103	5.5	NSF_3 ⁺
108	1,0	SF_4 ⁺
127	100.0	$SF6$ +
128	0.8	$S^{33}F_5$ ⁺
129	5.0	$S^{34}F_5$ ⁺
206	1.1	$S_2F_6N_2$ ⁺
333	8.8	$S_3F_{11}N_2$ ⁺
335	1.1	$S^{34}S_2F_{11}N_2$ ⁺
352	5.5	$S_3F_{12}N_2$ ⁺ (molecule ion)
354	0.74	$S^{34}S_2F_{12}N_2$ +

Acknowledgment.-This work was supported by the National Science Foundation under Grant No. GP-4974.

(IO) C. W. Tullock, D. D. Coffman, and E. L. Muetterties, *J. Am. Chem. Soc.,* **86,** 357 (1964).

(11) L. H. Cross, G. Cushing, and H. L. Roberts, *Sfieclrochim. Acta,* **17,** 344 (1961).

> CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF IDAHO, Moscow, IDAHO 83843

A Simple Preparation of Oxygen Difluoride in High Yield

BY ALAN H. BORNING AND KENT E. PULLEN¹

Received January 13, 1969

Oxygen difluoride is commonly prepared by bubbling fluorine through a 1-cm layer of 0.5 *N* NaOH with yields up to 50% .² A modification of this technique has been reported to produce OF_2 in a yield of 86.79%.³ The compound has also been produced by various electrolytic methods.^{4,5}

In view of recent successes in using CsF or KF to catalyze the preparation of hypofluorites, $6,7$ it was thought that OF_2 could be prepared by allowing H_2O to react with F_2 in the presence of an alkali fluoride. This was found to be the case. When F_2 was admitted to a glass bulb containing H_2O and excess CsF, KF, or NaF, a reaction occurred producing $\overrightarrow{OP_2}$ in yields that ranged from 55 to 80%. Yields were usually above 70% when CsF or KF was used but were generally lower (about 60%) when NaF was employed. Similar experiments were performed in which the alkali fluoride was replaced by powdered NaOH or $CaF₂$, but in neither case was any appreciable amount of $\rm OF_2$ obtained.

As a laboratory preparation, this method has the advantage of giving a high yield of $OF₂$ from a simple reaction. Moreover, the yield is not especially sensitive to either reaction time or variations in the molar ratios of the reactants. Reaction times varied from 15 min to 3 hr, fluorine to water molar ratios varied from 2: 1 to 4; 1, and alkali fluoride to water molar ratios varied from 2:1 to 100:1. The product is obtained in a very pure state, since HF and SiF_4 (formed from attack of HF on glass) are removed by combining with the catalyst. Oxygen, formed as a by-product, and unreacted fluorine are easily removed by pumping at -196° .

Experimental Section

Standard vacuum-line techniques were employed in all preparations.

When KF was used as a catalyst, H_2O was conveniently added in the form of the commercially available dihydrate, $KF \cdot 2H_2O$. In a typical experiment, 0.327 g (3.48 mmol) of $\text{KF}\cdot2\text{H}_2\text{O}$, 0.807 g (13.9 mmol) of anhydrous KF, and 0.544 g (14.3 mmol) of F_2 were allowed to react for **1.5** hr in a 500-ml glass bulb. **A** yield of 5.18 mmol (74%) of OF₂ was obtained. The identity and purity of the product were established from the characteristic infrared and 18F nmr spectra and from the molecular weight (calcd, 54.0 ; found, 53.4). When CsF or NaF was used as a catalyst, water was added by condensing the desired quantity onto the surface of the anhydrous, powdered catalyst. Since the alkali fluoride tended to cake as the reaction progressed, a few stainless steel balls were added to the glass bulb. Occasional agitation of the balls kept the catalyst powdered. While pumping away O_2 and F_2 from OF_2 at -196° , the pumping time was kept as short as possible in order to minimize loss of product, since OF₂ has an appreciable vapor pressure $(\sim)1$ mm) at -196° .

Acknowledgments.—The authors are grateful to Professor George H. Cady of the University of Washington for helpful suggestions in connection with this work. A. H. B. was a participant in the National Science Foundation Undergraduate Research Program, Grant No. GY4235.

(2) D. M. **Yost,** Inorg. Syn., 1, 109 (1939).

(3) K. A. **Brown** and J. J. Ligi, **U.** S. Patent 3,367,744 (1968); *Chem. Abstr.,* **68,** 70763 (1968).

(4) A. Engelbrecht and E. Nachbauer, *Monalsh. Chem.,* **SO,** 367 (1959).

(5) J. A. Donohue and W. **A.** Wilson, U. *S.* Patent 3,276,981 (1966); *Chem. Abslr., 66,* 25495 (1967).

(6) J. K. Ruff and M. Lustig, *Inorg. Chem.,* 3, 1422 (1964).

(7) M. Lustig, **A.** R. Pitochelli, and J. K. Kuff, *J. Am. Chem.* Soc., **89, 2841** (1967).

⁽¹⁾ Author to **whom** correspondence should be addressed: M. S. 86-85, Organization 2-7817, Aerospace Group, The Boeing Co., Kent, Wash. 98031.